
1

Contents

Basic Information

Overview:3

Installation:4

Input:5

DPMJET:12

Output14

Class Diagram16

File Descriptions17

Recent Updates:
v299: Added hard-coded Woods-Saxon radii, thickness and density for
96Ru and 96Zr, for the RHIC isobar run. Data is from arXiv:1607.04697

v297: Changed normalized for Woods-Saxon density for non-predefined
(i. e. not gold, lead, xenon or copper or nuclei with Z<7) so that
the density is properly normalized \int d^3r rho(r) = A. The
normalization was previously done for a hard-sphere nucleus, so this
over-estimated the cross-sections by 5-10%.

v295: Added hard-coded values for xenon-129 to match the recent LHC
run. Radius=5.36 fm, density=0.18406

v293: Introduced shared random number generator which can be
externally passed by the user. All particle constants (masses,
widths, branching ratios, and spins) can now also be set by the user,
but should be changed from the default values with care.

v290: Added an new BREAKUP_MODE option to generate two-photon events
in peripheral collisions. BREAKUP_MODE=8 sets a fixed impact
parameter range, regardless of the presence of nuclear breakup; it is
intended to study two-photon production in peripheral collisions. It
requires two additional otherwise optional input lines, BMIN and
BMAX, to set the impact parameter range. It does not (yet?) work for
photonuclear interactions.

278: Added two new optional parameters:

IMPULSE_VM Normally 0, but can be set to 1 to perform an impulse
approximation calculation (i.e. ignoring nuclear effects)

2

QUANTUM_GLAUBER. When set to 1, performs a quantum Glauber
calculation, rather than a classical one. This leads to greatly
increased rho and omega cross-sections for heavy nuclei, little
effect for heavier mesons.

Also added a final state, 4432212, for J/psi -> pbar p

v276: Added two new optional parameters (BSLOPE DEFINITION and
BSLOPE_VALUE) for the pT spectrum ('bslope') for proton targets or
incoherent production on nuclei

v275: Added gg to axion channel as two-photon channel 88, per S.
Knapen et al., arXiv:1607.07083 v273: "Baseline" version, described
in arXiv:1607.03838)

3

Overview:

 The STARlight Monte Carlo models 2-photon and photon-Pomeron
interactions in ultra-peripheral heavy ion collisions. The physics
approach for the photon-Pomeron interactions is described in Klein and
Nystrand, Phys. Rev. C60, 014903 (1999), with the p_t spectrum (including
vector meson interference) discussed in Phys. Rev. Lett. 84, 2330 (2000).
The 2-photon interactions are described in Baltz, Gorbunov, Klein,
Nystrand, Phys.Rev. C80 044902 (2009).

 STARlight has several input files, all of which are expected to be
in the same directory as the starlight code. User-specified input
parameters are read from a file named "slight.in"; these parameters are
described below in Input.

 The simulated events are written to an ASCII file named
"slight.out", which is described below in Output.

4

Installation:

To obtain the latest version:
-svn co http://starlight.hepforge.org/svn/trunk

Alternatively:
-Visit https://starlight.hepforge.org/trac/browser
-Download the trunk [click on the download symbol in the Size column]
-Unpackage the zip file. The trunk/ represents <PathToSource>

To build Starlight:

- First create your build directory <BUILDDIR> (e.g. mkdir bin)
- $ cd <BUILDDIR>
- $ cmake <PathToSource>
- $ make

This creates an executable file, starlight, in the build directory.

To clean the build:
- $ make clean
To run starlight, a configuration file, slight.in, is needed. Examples of
slight.in may be found in the config/ directory.

To run:

$./starlight

Enabling Pythia:
To simulate the h, h’, and hc channels, you need Pythia v8.2 or higher to
handle their decays. To enable Pythia support you need to run cmake with
the option –DENABLE_PYTHIA=ON and have $PYTHIADIR pointing to the top
directory of Pythia8. [Note: when building Pythia, be sure to enable
shared libraries(.so). ./configure –-enable-shared before compiling
Pythia.]

$ setenv PYTHIADIR /my/local/pythia8

$ cmake <PathToSource> -DENABLE_PYTHIA=ON

Note: v8.2+ is necessary since the Pythia directory structure
changed[trunk/cmake_modules/FindPythia8.cmake depends on the structure
layout], liblhapdfdummy was removed, and Standalone:allowResDec was
removed.

To enable DPMJET, please see the passage on DPMJET

5

Input:

 The input parameters are listed below with typical values for LHC
Pb-Pb running given in parentheses. Optional parameters are denoted with
*.

baseFileName # The name of the output files. STARlight will

copy the input slight.in to baseFileName.in, and
produce output files baseFileName.txt and
baseFileName.out. (slight)

BEAM_1_Z = 82 # Charge of beam one projectile. (82)
BEAM_1_A = 208 # Atomic number of beam one projectile. (208)
BEAM_2_Z = 82 # Charge of beam two projectile. (82)
BEAM_2_A = 208 # Atomic number of beam two projectile. (208)
BEAM_1_GAMMA = 1470 # Lorentz boost for beam one projectile(pz>0).

(1470)
BEAM_2_GAMMA = 1470.0 # Lorentz boost for beam two projectile(pz<0).

(1470)
W_MAX = 12.0 # Maximum value for the gamma-gamma center of mass

energy, W = 4E1E2, in GeV. Setting W_MAX = -1
tells STARlight to use the default value specified
in inputParameters.cpp (recommended for single
meson production). For single mesons, the default
W_MAX is the particle mass plus five times the
width. For lepton pairs, the default W_MAX is

given by 2ℏ𝑐#
$%$&
'%'&

. These are defined in

src/inputParameters.cpp (-1)
W_MIN = -1 #Min value of w. Minimum value for the gamma-gamma

center of mass energy, W = 4E1E2, in GeV. Setting
W_MIN = -1 tells STARlight to use the default
value specified in inputParameters.cpp
(recommended for single meson production). The
default W_MIN is the larger of the kinematic limit
(e.g. 2mp for r decays) or the particle mass
minus five times the width. (-1)

W_N_BINS = 40 #Bins w maximum and minimum values for w (the
gamma-gamma center of mass energy, w = 4E1E2), and
the number of w bins in the lookup tables (40)

RAP_MAX = 8. # Maximum rapidity of produced particle. (8)
RAP_N_BINS = 80 # Number of rapidity bins used in the cross

section calculation (80)
CUT_PT* = 0 # Specifies whether the user chooses to place

restrictions on the transverse momentum of the
decay products. 0= no, 1 = yes. (0)

PT_MIN* = 1.0 # If a transverse momentum cut is applied, this
specifies the minimum value produced, in GeV/c.
(1.0)

PT_MAX* = 3.0 # If a transverse momentum cut is applied, this
specifies the maximum value produced, in GeV/c.
(3.0)

6

CUT_ETA* = 0 # Specifies whether the user chooses to place
restrictions on the pseudorapidity of the decay
products. 0= no, 1 = yes. (0)

ETA_MIN* = -10 # If a pseudorapidity cut is applied, this
specifies the minimum value produced. (-10)

ETA_MAX* = 10 # If a pseudorapidity cut is applied, this
specifies the maximum value produced. (10)

PROD_MODE = 2 #PROD_MODE=1: Two-photon interaction.
PROD_MODE=2: Coherent photonuclear vector meson
production assuming narrow resonances. This option
should also be used for exclusive vector meson
production in pp collision. In pA or pp
collisions, this option means that the proton
emits the photon and that the gamma-A interaction
is coherent.
PROD_MODE=3: Coherent photonuclear vector meson
production assuming wide resonances. This option
should in be used for exclusive ρ^0
production.
PROD_MODE=4: Incoherent photonuclear vector meson
production. In pA collisions, this option means
that the nucleus emits the photon. Do not use for
pp.
PROD_MODE=5: Photonuclear one photon exchange
uses DPMJET single.
PROD_MODE=6: Photonuclear two photon exchange
(both nuclei excited) uses DPMJET double.
PROD_MODE=7: Photonuclearsinglepa uses DPMJET
Single, proton mode.
PROD_MODE=8: [not supported/verified] Photonuclear
singlepapy uses Pythia 6

N_EVENTS = 10 #Number of events produced (1000)
PROD_PID = 443013 # For PROD_MODE 1 through 4, this selects the

channel to be produced, in PDG notation. Currently
supported options are list below. (443013)

RND_SEED = 34533 # Seed for random number generator. (34533)
BREAKUP_MODE = 5 # Specifies the way nuclear break-up is handled.

This option only works for lead or gold. It has no
meaning in proton-proton or proton-nucleus
collisions
1 = hard sphere nuclei (no hadronic break-up if
impact parameter is greater than the sum of
nuclear radii, no restriction on Coulomb break-
up).
2 = requires Coulomb break-up of both nuclei, with
no restriction on the number of neutrons emitted
by either nucleus (XnXn).
3 = requires Coulomb break-up of both nuclei, but
requires that a single neutron is emitted from
each nucleus (1n1n).
4 = requires Coulomb break-up of neither nucleus.
(0n0n)
5 = requires that there be no hadronic break up,
no restriction on Coulomb break-up (This is

7

similar to option 1, but with the actual hadronic
interaction probability).
6 = requires Coulomb break up of one or both
nuclei, with no restriction on the number of
neutrons emitted (XnXn + 0nXn + Xn0n).
7 = requires Coulomb break up of only one nucleus,
with no restriction on the number of neutrons
emitted (0nXn+ Xn0n).
8 = selectable input parameter range (i.e. for
peripheral collisions, not UPCs) regardless of
nuclear breakup. Fixed input range between BMAX
and BMIN (set by two otherwise optional cards,
below)

INTERFERENCE = 0 # Specifies whether interference based on the
ambiguity of which nucleus emits the photon is
included. The effect of this interference is only
visible at very small transverse momentum. 0 =
interference off, 1 = interference on. (0)

IF_STRENGTH = 1. # If interference is turned on, specifies the
percentage of interference. The range is -1.0 –
1.0.; 1 is the standard value for ion-ion
collisions, while -1.0 is expected for proton-
antiproton collisions. (1)

INT_PT_MAX = 0.24 # Used only when the interference option above is
turned on. This specifies the maximum transverse
momentum considered, in GeV/c. (0.24)

INT_PT_N_BINS = 120 # Used only when the interference option above is
turned on. This specifies the number of bins in
transverse momentum to use. (120)

INT_PT_WIDTH = 0 #Used only when the interference option above is
turned on. This specifies the width of bins in
transverse momentum to use. (0)

XSEC_METHOD* = 0 #Determines which method is used to calculate the
cross-section for gg cross-sections. XSEC_METHOD=0
is faster, but works only for symmetric collisions
(i.e. with identical nuclei). XSEC_METHOD=1
always works, but is slower. (0)

BSLOPE_DEFINITION*=0 Used for proton and nucleon (i. e. incoherent
nuclear) collisions to set the t-spectrum,
dN/dt=exp(-bt). When BSLOPE_DEFINITION=1, then the
slope is determined by BSLOPE_VALUE (below). When
BSLOPE_DEFINITION=2, the slope is calculated as a
function of gp center of mass energy per the H1
analysis, Eur. Phys. J. C46, 585 (2006):
b=4.63/GeV2 + 4aln(Wgp/90 GeV)
The default value, BSLOPE_DEFINITION=0 has no
effect.
Note that this affects the t-slope only; it does
not affect the total cross-section

BSLOPE_VALUE* WHEN BSLOPE_DEFINITION=1, this determines the
exponential slope for dN/dt=exp(-BSLOPE_VALUE*t)

SELECT_IMPULSE_VM When set =1, performs an impulse approximation
calculation (this ignores most nuclear physics,
including shadowing). Default=0; no change

8

QUANTUM_GLAUBER When set =1, perform a quantum Glauber
calculation, rather than classical, which is the
default (or when set =0)

BMIN Needed for Breakup_mode=8. Sets the minimum impact
parameter

BMAX Needed for Breakup mode=8. Sets sthe maximum
impact parameter.

The physics constants used by STARlight can be set with the following
parameters:

deuteronSlopePar deuteron slope parameter (effective temperature)

[(GeV/c)^-2]
protonMass mass of the proton [GeV/c^2]
pionChargedMass mass of the pi^+/- [GeV/c^2]
pionNeutralMass mass of the pi^0 [GeV/c^2]
kaonChargedMass mass of the K^+/- [GeV/c^2]
mel mass of the e^+/- [GeV/c^2]
muonMass mass of the mu^+/- [GeV/c^2]
tauMass mass of the tau^+/- [GeV/c^2]
f0Mass mass of the f_0(980) [GeV/c^2]
f0Width width of the f_0(980) [GeV/c^2]
f0BrPiPi branching ratio f_0(980) -> pi^+ pi^- and pi^0
pi^0
etaMass mass of the eta [GeV/c^2]
etaWidth width of the eta [GeV/c^2]
etaPrimeMass mass of the eta' [GeV/c^2]
etaPrimeWidth width of the eta' [GeV/c^2]
etaCMass mass of the eta_c [GeV/c^2]
etaCWidth width of the eta_c [GeV/c^2]
f2Mass mass of the f_2(1270) [GeV/c^2]
f2Width width of the f_2(1270) [GeV/c^2]
f2BrPiPi [GeV/c] f_2(1270) -> pi^+ pi^-
a2Mass mass of the a_2(1320) [GeV/c^2]
a2Width width of the a_2(1320) [GeV/c^2]
f2PrimeMass mass of the f'_2(1525) [GeV/c^2]
f2PrimeWidth width of the f'_2(1525) [GeV/c^2]
f2PrimeBrKK branching ratio f'_2(1525) -> K^+ K^- and K^0

K^0bar
zoverz03Mass mass of four-quark resonance (rho^0 pair

production) [GeV/c^2]
f0PartialggWidth partial width f_0(980) -> g g [GeV/c^2]
etaPartialggWidth partial width eta -> g g [GeV/c^2]
etaPrimePartialggWidth partial width eta' -> g g [GeV/c^2]
etaCPartialggWidth partial width eta_c -> g g [GeV/c^2]
f2PartialggWidth partial width f_2(1270) -> g g [GeV/c^2]
a2PartialggWidth partial width a_2(1320) -> g g [GeV/c^2]
f2PrimePartialggWidth partial width f'_2(1525) -> g g [GeV/c^2]
zoverz03PartialggWidth partial width four-quark resonance -> g g (rho^0

pair production) [GeV/c^2]
f0Spin spin of the f_0(980)
etaSpin spin of the eta
etaPrimeSpin spin of the eta'
etaCSpin spin of the eta_c

9

f2Spin spin of the f_2(1270)
a2Spin spin of the a_2(1320)
f2PrimeSpin spin of the f'_2(1525)
zoverz03Spin spin of the four-quark resonance -> g g (rho^0

pair production)
axionSpin spin of the axion
rho0Mass mass of the rho^0 [GeV/c^2]
rho0Width width of the rho^0 [GeV/c^2]
rho0BrPiPi branching ratio rho^0 -> pi^+ pi^-
rho0PrimeMass mass of the rho'^0 (4 pi^+/- final state)

[GeV/c^2]
rho0PrimeWidth width of the rho'^0 (4 pi^+/- final state)

[GeV/c^2]
rho0PrimeBrPiPi branching ratio rho'^0 -> pi^+ pi^-
OmegaMass mass of the omega [GeV/c^2]
OmegaWidth width of the omega [GeV/c^2]
OmegaBrPiPi branching ratio omega -> pi^+ pi^-
PhiMass mass of the phi [GeV/c^2]
PhiWidth width of the phi [GeV/c^2]
PhiBrKK branching ratio phi -> K^+ K^-
JpsiMass mass of the J/psi [GeV/c^2]
JpsiWidth width of the J/psi [GeV/c^2]
JpsiBree branching ratio J/psi -> e^+ e^-
JpsiBrmumu branching ratio J/psi -> mu^+ mu^-
JpsiBrppbar branching ratio J/psi -> p pbar
Psi2SMass mass of the psi(2S) [GeV/c^2]
Psi2SWidth width of the psi(2S) [GeV/c^2]
Psi2SBree branching ratio psi(2S) -> e^+ e^-
Psi2SBrmumu branching ratio psi(2S) -> mu^+ mu^-
Upsilon1SMass mass of the Upsilon(1S) [GeV/c^2]
Upsilon1SWidth width of the Upsilon(1S) [GeV/c^2]
Upsilon1SBree branching ratio Upsilon(1S) -> e^+ e^-
Upsilon1SBrmumu branching ratio Upsilon(1S) -> mu^+ mu^-
Upsilon2SMass mass of the Upsilon(2S) [GeV/c^2]
Upsilon2SWidth width of the Upsilon(2S) [GeV/c^2]
Upsilon2SBree branching ratio Upsilon(2S) -> e^+ e^-
Upsilon2SBrmumu branching ratio Upsilon(2S) -> mu^+ mu^-
Upsilon3SMass mass of the Upsilon(3S) [GeV/c^2]
Upsilon3SWidth width of the Upsilon(3S) [GeV/c^2]
Upsilon3SBree branching ratio Upsilon(3S) -> e^+ e^-
Upsilon3SBrmumu branching ratio Upsilon(3S) -> mu^+ mu^-

The following parameters are used only when interfacing with the PYTHIA
and/or DPMJET interfaces:

MIN_GAMMA_ENERGY = 6 #Allows the user to set the minimum photon energy

(in GeV) in the rest frame of the target nucleus.
The default is 6.0 GeV and it should never be set
below this value since DPMJET was not designed to
handle low energy interactions.

MAX_GAMMA_ENERGY = 600000
 #Allows the user to set the maximum photon energy

(in GeV) in the rest frame of the target nucleus.
The default is 60000.0 GeV.

10

PYTHIA_PARAMS = ““ #Used to supply input parameters to the PYTHIA
interface. This takes a string to pass on semi-
colon separated parameters to PYTHIA 6. eg:
"mstj(1)=0;paru(13)=0.1" (the default is a blank
string " ")

PYTHIA_FULL_EVENT_RECORD = 1
 #Determines whether the full event record from

PYTHIA is written to slight.out. true = yes,
false = no (false). The additional information
added is as follows: daughter production vertex (x
[mm], y [mm], z [mm], t [mm/c]), mother1, mother2,
daughter1, daughter2, PYTHIA particle status code.
PYTHA 8 Particle Properties page describes in more
detail the properties of mother, daughter, and
status code designations.

Channels of Interest:

2-Photon Channels
Currently supported 2-photon (prod. mode = 1) channel options:
 jetset id particle

 221 eta
 331 eta-prime
 441 eta-c
 9010221 f0(975)
 225 f2(1270)
 115 a2(1320)
 335 f2(1525)
 33 rho0 pair
 11 e+/e- pair
 13 mu+/mu- pair
 15 tau+/tau- pair
 88 axion-like particle (ALP)

Process 88 refers to the single production of a hypothetical axion-like
particle (ALP), which decays to a pair of photons. The ALP mass has to be
specified by the user through the parameter AXION_MASS. The narrow width
approximation is assumed here, with a fixed axion decay constant of
\Lambda=1 TeV. (See equation (1) of arXiv:1607.06083 for the appropriate
conventions.) The cross section can be then rescaled to arbitrary
\Lambda, as long as the narrow width approximation remains valid.

Pomeron-Photon Channels
Currently supported vector meson (prod. mode = 2/3/4) options:
 jetset id particle

 113 rho0
 223 omega
 333 phi
 443011 J/psi --> e+e-

443013 J/Psi --> mu+mu-
4432212 J/psi à proton antiproton

11

 444011 Psi(2S) --> e+e-
 444013 Psi(2S) --> mu+mu-
 553011 Upsilon(1S) --> e+e-
 553013 Upsilon(1S) --> mu+mu-
 554011 Upsilon(2S) --> e+e-
 554013 Upsilon(2S) --> mu+mu-
 555011 Upsilon(3S) --> e+e-
 555013 Upsilon(3S) --> mu+mu-

913 rho0 + direct pi+pi- (with interference). The direct
pi+pi- fraction is from the ZEUS results, EPJ C2 p247
(1998)

999 four-prong final states (rho’-like to pi+pi-pi+pi-)

12

DPMJET:

Simulation of photonuclear interactions with STARlight is possible
through an interface with DPMJet. These interfaces can be enabled through
options passed to cmake during the configuration process. [Depreciated:
Using Pythia 6 as a substitute for DPMJet]

The gfortran compiler is required to use the photonuclear interfaces.

=============== 1. Photonuclear interactions with DPMJet ===============

 ------- 1.1. Obtaining and installing DPMJet -------

 The DPMJet package can be obtained by contacting the authors as

explained here: http://sroesler.web.cern.ch/sroesler/dpmjet3.html

Once you have the code proceed with these steps:

Change the line containing the OPT variable in the DPMJet
Makefile:

 OPT = -c -C -std=legacy -O -O3 -g -fexpensive-optimizations

-funroll-loops -fno-automatic -fbounds-check -v -fPIC

------------- 64-bit -------------

Make sure that all -m32 options are removed from the
Makefile.

 Unfortunately, the DPMJet package depends on a floating point

exception trap implementation, and only a 32-bit version of that is
included in the package, which needs to be replaced. An example
implementation can be found here:
http://www.arsc.edu/arsc/support/news/hpcnews/hpcnews376/

 Under "Fortran Floating Point Traps for Linux" there is a
code example. A file based on this, fpe.c, can be found in the
external/ directory in STARlight. Move that to your DPMJet
directory to replace the original file and run:

 $ gcc -o fpe.o fpe.c

Note: if the above command returns the following error:
/usr/lib/../lib64/crt1.o: In function `_start':
(.text+0x20): undefined reference to `main'
/tmp/ccs2CQsd.o: In function `enable_exceptions_':
fpe.c:(.text+0xe): undefined reference to `feenableexcept'

13

collect2: error: ld returned 1 exit status
Try: gcc fpe.c -Wall -g -c

feenableexcept is a gcc extension and gcc may need all of the
headers present.

------------- End 64-bit -------------

 Then in the DPMJet directory run:

 $ make

 Note: When compiling at RCAS(BNL), needed to change g77 à
gfortran, needed to install fluka and setenv FLUPRO /path/to/fluka, and
modify phojet before compiling. The changes for phojet is at line 29875,
from:

 PRINT LO,'PHO_DIFSLP:ERROR: this option is not installed !'

to:
 WRITE(LO,'(/1X,A,I2)')
 & 'PHO_DIFSLP:ERROR: this option is not installed
 & !',ISWMDL(13)

------------ 1.2. Compiling Starlight with DPMJet interface ------------

 To enable the compilation of the DPMJet interface please

follow these steps:

 CMake uses an environment variable $DPMJETDIR to locate the

DPMJet object files, so define it.

 $ export DPMJETDIR=<path to dpmjet>

 Then create a build directory for STARlight

 $ mkdir <build-dir>

 and change into it

 $ cd <build-dir>

 Run CMake with the option to enable DPMJet

 $ cmake <path-to-starlight-source> -DENABLE_DPMJET=ON

 Then build it

 $ make

 Note: When compiling at RCAS(BNL), needed to add the gfortran
library to the CMakeLists.txt and left it there.

14

----------- 1.3. Running Starlight with DPMJet interface -----------

 To run Starlight with the DPMJet interface a couple of files are
needed in the directory where you want to run Starlight.

 The files needed are:
 slight.in (Starlight config file. An example suitable for

DPMJet can be found in config/slight.in.dpmjet)
 my.input (DPMJet config file. An example can be found in

config/my.input)
 dpmjet.dat (Can be found in the DPMJet source directory)

 In the slight.in file the relevant production modes (PROD_MODE) for
DPMJET is:

 5: A+A single excitation
 6: A+A double excitation
 7: p+A single excitation

 In addition the minimum and maximum gamma energies must be set.
These must be within the interval set in the my.input file.

To run:

$./starlight < my.input

[DPMJET reads from direct input/interactive]

Output

STARlight outputs an ASCII file named slight.out.

For each event, a summary line is printed, with the format

EVENT: n ntracks nvertices ,

where n is the event number (starting with 1), ntracks is the number
of tracks in the event, and nvertices is the number of vertices in
the event (STARlight does not currently produce events with more than
one vertex).

EVENT line is followed by a description of the vertex, with the
format

VERTEX: x y z t nv nproc nparent ndaughters ,

15

where x, y, z and t are the 4-vector components of the vertex
location, nv is the vertex number, nproc is a number intended to
represent physical process (always set to 0), nparent is the track
number of parent track (0 for primary vertex) and ndaughters is the
number of daughter tracks from this vertex.

This is followed by a series of lines describing each of the daughter
tracks emanating from this vertex. Each track line has the format

TRACK: GPID px py py nev ntr stopv PDGPID ,

where GPID is the Geant particle id code, px, py and pz are the three
vector components of the track's momentum, nev is the event number,
ntr is the number of this track within the vertex (starting with 0),
stopv is the vertex number where track ends (0 if track does not
terminate within the event), and PDGPID is the Monte Carlo particle
ID code endorsed by the Particle Data Group.

16

Class Diagram

17

File Descriptions

Readme.pdf

[This file.] provides information on the installation, operation,
and construction of STARlight.

CMakeLists.txt

controls STARlight compilation. For details, please see above in
Installation. This is the default/supported compilation method.

Makefile

A sample Makefile for compilation on *nix systems. This file is
not actively supported. Please use CMake.

starlightconfig.h.in

passes on some compiler settings; such as enabling the
Pythia/DPMJet sections within the source code.

starlightDoxyfile.conf
 Doxygen configuration file.

CMake Modules:
 FindPythia8.cmake

used by CMake to find the Pythia 8 files needed to compile
STARlight with Pythia 8 dependent options enabled. It
searches for: Pythia.h, Index.xml, libpythia8

 FindPythia6.cmake

used by CMake to find the Pythia 6 files needed to compile
STARlight with Pythia 6 dependent options enabled. It
searches for: libPythia6. Pythia 6 functionality has been
deprecated.

 FindDPMJet.cmake

used by CMake to find the DPMJET files needed to compile
STARlight with DPMJET dependent options enabled. It searches
for: dpmjet3.0-5.o, pythia6115dpm3v1.o, and phojet1.12-35c4.o

 FindROOT.cmake

used by CMake to find the ROOT files needed to compile
STARlight with ROOT dependent options enabled. It searches
for: root-config. root-config is then used to set the rest
of the paths/options needed to enable ROOT within STARlight.

 CommonMacros.cmake

A collection of useful cmake macos.

 FindLHAPDF.cmake

used by CMake to find the LHAPDF dependent options enabled.
This was necessary for older versions of Pythia8, but this is
no longer the case. However, this file is being kept in the

18

distribution for users that would like to re-enable it. It
searches for: Pythia.h and liblhapdfdummy

Config files:

 my.input

A sample DPMJET configuration file.

 slight.in

A sample STARlight input file, to select the desired final
state and associated options. The section Input has more
information.

 slight.in.dpmjet

A sample slight.in file to use the DPMJET options (eg:
PROD_MODE = 5, 6, 7, and MIN_GAMMA_ENERGY, and MAX_GAMMA_ENERGY.).

 slight.in.ee_rhic

A sample slight.in file for e+e- production by Au-Au at top
RHIC energies

slight.in.jpsi_lhc

A sample slight.in file for J/y production by Pb-Pb at the
LHC.

 slight.in.pPb_lhc

A sample slight.in file for J/y production by p-Pb at the
LHC.

 slight.in.rho_rhic

A sample slight.in file for r production by Au-Au at top RHIC
energies.

dpmjet:

dpmjetint.f
This is a DPMJET library, used in the CMakeLists.txt file to
link when enabling DPMJET.

external:

 fpe.c

corrects for the floating point trap differences between 32
and 64-bit. The DPMJET section has more information.

pythia6:

pythiainterface.h
interfaces Pythia6 with STARlight. Pythia 6 functionality has
been deprecated.

utils:

19

Ana.C
This macro runs Analyze.cxx, which takes as input an ASCII
STARlight output file, slight.out, and creates a standard set
of histograms, which are stored in histograms.root

 Analyze.cxx

This macro reads in a starlight output file and creates
histograms of the p_T and rapidity of the daughters, as well
as the p_T, rapidity and mass of the parent. It assumes
there are only 2 daughter tracks that are electrons, muons,
or pions. The histograms for the daughter particles are
called fPt2, fPt2, fRap1, and fRap2. Parent histograms are
created for each possible daughter species (e.g., parent p_T
histograms are created with the names fPtEl, fPtMu, and
fPtPi), but only the ones corresponding to the actual
daughter particle are filled. The histograms are saved in a
file called histograms.root.
To use this Analyze.cxx, modify the file Ana.C to call your
input file (as downloaded, it calls slight.out) and the
number of events you wish to process (as downloaded, it
processes 20 events). Then open root and type ".x Ana.C" .

 Analyze.h
 The header file for Analyze.cxx and Ana.C.

 AnalyzeTree.cxx

This macro reads the starlight.root file produced by
ConvertStarlightAsciiToTree.C, which contains TLorentzVectors
for the parents and a TClonesArray of TLorentzVectors for the
daughters. It creates histograms of the p_T and rapidity of
the daughters, as well as the p_T, rapidity and mass of the
parent. While the parents may have been created as the
vector sum of any number of daughter particles, this macro
currently produces histograms for only the first two daughter
particles. The daughter histograms are called D1Pt, D2Pt,
D1Rapidity, and D1Rapidity. Parent histograms are named
ParentPt, ParentRapidity, and ParentMass. The histograms are
stored in starlight_histos.root.

To use Analyzetree.cxx, first run
ConvertStarlightAsciiToTree.C to produce the starlight.root
file. If needed, modify the file AnalyzeTree.h to call your
input file (as downloaded, it calls starlight.root). Then
open root and type .x AnaTree.C .

 AnalyzeTree.h
 The header file for AnalyzeTree.cxx.

AnaTree.C
 compiles and runs AnalyzeTree.cxx, which takes as input the

starlight.root file produced by
ConvertStarlightAsciiToTree.cxx output histograms are stored
in starlight_histos.root

20

 ConvertStarlightAsciiToTree.C
reads a starlight output file (default name slight.out) and
creates a root file with TLorentzVectors for the parent and a
TClonesArray of TLorentzVectors for the daughter particles.
The output is stored in a root file (default name
starlight.root) with one branch labeled "parent" and the
other labeled "daughters". Any number of daughter tracks can
be accommodated. Daughter species currently accommodated
are: electrons, muons, charged or neutral pions, charged or
neutral kaons, and protons.

To use AnaTree.C, open root and then type .x
ConvertStarlightAsciiToTree.C("inputfilename",
"outputfilename") The root file produced can be examined in a
root TBrowser.

A macro to read this root file and make some standard plots
is also provided. This macro is called AnalyzeTree.cxx; it
can be compiled and run with the AnaTree.C macro by opening
root and typing .x AnaTree.C()

Source Files:

 beam.cpp

generates the beam class, which inherits from the nucleus
class (cf. nucleus.cpp). The object represents an
accelerated nucleus, or a beam.

 Functions:
beam::beam
beam::~beam
beam::photonFlux // calculates the “photon density” given

the impact parameter and energy.

 beambeamsystem.cpp

represents the colliding system of interest.
Functions:

beamBeamSystem::beamBeamSystem
beamBeamSystem::~beamBeamSystem
beamBeamSystem::probabilityOfBreakup
beamBeamSystem::generateBreakupProbabilities
beamBeamSystem::probabilityOfHadronBreakup
beamBeamSystem::probabilityOfPhotonBreakup

 bessel.cpp

calculate modified Bessel functions of the first and second
kind.
Functions:

 bessel::besI0
bessel::dbesk0
bessel::dbesk1
bessel::besI1

 eventchannel.cpp

21

inherits from readLuminosity. It is a base for class for
functions to produce events that is overloaded by other
classes (Gammagammaleptonpair, Gammagammasingle,
Gammaavectormeson, starlightDpmJet, and starlightPythia).
Functions:

eventChannel::eventChannel
eventChannel::~eventChannel
eventChannel::transform // Lorentz Tranforms the frame
eventChannel::pseudoRapidity // calculates the

pseudorapidity with the input from px, py, and pz

eventfilewriter.cpp
writes event information in the output file.
Functions:

eventFileWriter::eventFileWriter
 eventFileWriter::~eventFileWriter

eventFileWriter::writeEvent

 filewriter.cpp

The base class for eventFileWriter, which is writes event
information in the output file.
Functions:

 fileWriter::fileWriter()
fileWriter::~fileWriter()
fileWriter::open
fileWriter::open(filename)
fileWriter::close

 gammaaluminosity.cpp

contains the photonNucleusLuminosity class, which inherits
from photonNucleusCrossSection. It calculates the
differential cross-section for gamma-A interactions.
Functions:

 photonNucleusLuminosity::photonNucleusLuminosity
photonNucleusLuminosity::~photonNucleusLuminosity
photonNucleusLuminosity::photonNucleusDifferentialLuminosi
ty //Calculates and outputs the differential luminosity
photonNucleusLuminosity::pttablegen // Calculates the pt
spectra for VM production with interference per S. Klein
and J. Nystrand, Phys. Rev Lett. 84, 2330 (2000).
photonNucleusLuminosity::vmsigmapt //calculates th effect
of the nuclear form factor on the pt spectrum, for use in
interference calculations. It calculates the cross section
suppression SIGMAPT(PT) as a function of pt. The input pt
values come from pttable.inc
photonNucleusLuminosity::nofe //calculates the ‘photon
density’d^2N_gamma/db^2

 gammaavm.cpp

is responsible for classes Gammaavectormesion,
Gammaanarrowvm, and Gammaawidevm. Both Gammaanarrowvm and
Gammaawidevm inherit from Gammaavectormeson, which inherits
from eventChannel. The classes are responsible for
generating and decaying the vector mesons produced by photon-
nucleus interactions.

22

Functions:
 Gammaavectormeson::Gammaavectormeson
 Gammaavectormeson::~Gammaavectormeson

Gammaavectormeson::pickwy //responsible for selecting the
events center of mass energy and rapidity
Gammaavectormeson::twoBodyDecay // This routine decays a
particle into two particles of mass mdec, taking spin into
account
Gammaavectormeson::fourBodyDecay // decays a particle into
four particles with isotropic angular distribution
Gammaavectormeson::getDaughterMass //returns the daughter
particles mass, & the final particles id...
Gammaavectormeson::getTheta //This depends on the decay
angular distribution
Gammaavectormeson::getWidth
Gammaavectormeson::getMass
Gammaavectormeson::getSpin //it’s a VM, returns 1
Gammaavectormeson::momenta // calculates momentum and
energy of vector meson given W and Y, without
interference.
Gammaavectormeson::pTgamma //finds the photon pT
Gammaavectormeson::vmpt // calculates momentum and energy
of a vector meson given W and Y, including interference.
It gets the pt distribution from a lookup table.
produceEvent
pseudorapidity
Gammaanarrowvm::Gammaanarrowvm
Gammaanarrowvm::~Gammaanarrowvm
Gammaanarrowvm::gammaaincoherentvm

 Gammaawidevm::Gammaawidevm
 Gammaawidevm::~Gammaawidevm

 gammagammaleptonpair.cpp

inherits from eventChannel. It calculates the lepton pair’s
cross-section and generates and decayes the lepton pairs.
Functions:

Gammagammaleptonpair::Gammagammaleptonpair
Gammagammaleptonpair::~Gammagammaleptonpair
Gammagammaleptonpair::twoLeptonCrossSection // calculates
section for 2-particle decay, per, see STAR Note 243, Eq.
9. It calculates the 2-lepton differential cross section
Gammagammaleptonpair::twoMuonCrossSection // gives the
two muon cross section as a function of Y&W, per G.Soff
et. al Nuclear Equation of State, part B, 579
Gammagammaleptonpair::pickw // Picks a w for the 2- photon
calculation.
Gammagammaleptonpair::picky // Picks a y given a W
Gammagammaleptonpair::pairMomentum // calculates
px,py,pz,and E given w and y
Gammagammaleptonpair::pp_1 // For beam 1, returns a
random momentum drawn from from pp_1(E) distribution
Gammagammaleptonpair::pp_2 // For beam 2, returns a
random momentum drawn from from pp_2(E) distribution
Gammagammaleptonpair::twoBodyDecay //decays a particle
into two particles of mass mdec, taking spin into account

23

Gammagammaleptonpair::thetalep // calculates the cross-
section as a function of angle for a given W and Y, for
the production of two muons or taus, per Brodsky et al.
PRD 1971, 1532 equation 5.7
Gammagammaleptonpair::produceEvent //returns the vector
with the decay particles inside
Gammagammaleptonpair::calculateTable //calculates the
tables that are used elsewhere in the Monte Carlo the tau
decay follows V-A theory, 1 - 1/3 cos(theta)the energy of
each of the two leptons in tau decay is calculated using
formula 10.35 in “Introduction to elementary particles by
D. Griffiths,” which assumes that the mass of the electron
is 0. The maximum electron energy in in such a system is
0.5 * mass of the tau
Gammagammaleptonpair::tauDecay // assumes that the
tauons decay to electrons and calculates the directons of
the decays
Gammagammaleptonpair::getMass
Gammagammaleptonpair::getWidth
Gammagammaleptonpair::getSpin

 gammagammasingle.cpp

inherits from eventChannel. It calculates the cross-section
for single mesons and generates and decays the single mesons
from gamma-gamma interactions. It also generates single
mesons which are then decayed by Pythia 8.
Functions:

 Gammagammasingle::Gammagammasingle
Gammagammasingle::~Gammagammasingle
Gammagammasingle::singleCrossSection // calculates the
cross-section in the narrow-width approximation, per STAR
Note 243, Eq. 8
Gammagammasingle::pickw // picks a w for the 2-photon
calculation.
Gammagammasingle::picky
Gammagammasingle::parentMomentum // calculates
px,py,pz,and E given w and y
Gammagammasingle::pp_1 // For beam 1, returns a random
momentum drawn from from pp(E) distribution
Gammagammasingle::pp_2 // For beam 2, returns a random
momentum drawn from from pp(E) distribution
Gammagammasingle::twoBodyDecay //decays a particle into
two particles of mass mdec, taking spin into account
Gammagammasingle::produceEvent
Gammagammasingle::getMass
Gammagammasingle::getSpin

 incoherentPhotonNucleusLuminosity.cpp

is responsible for the incoherentPhotonNucleusLuminosity
class and inherits from photonNucleusCrossSection. It houses
the differential luminosity calculation for incoherent gamma-
A interactions.
Functions:

incoherentPhotonNucleusLuminosity::incoherentPhotonNucleus
Luminosity

24

incoherentPhotonNucleusLuminosity::~incoherentPhotonNucleu
sLuminosity
incoherentPhotonNucleusLuminosity::incoherentPhotonNucleus
DifferentialLuminosity
incoherentPhotonNucleusLuminosity::nofe //Function for the
calculation of the "photon density".

 incoherentVMCrossSection.cpp

inherits from photonNucleusCrossSection. It calculates the
cross-section for incoherent photon-nucleus interactions.
Functions:

 incoherentVMCrossSection::incoherentVMCrossSection
incoherentVMCrossSection::~incoherentVMCrossSection
incoherentVMCrossSection::crossSectionCalculation //
calculates the vector meson cross section assuming a
narrow resonance. For reference, see STAR Note 386.

 inputParameters.cpp

sets and stores STARlight’s input parameters.
Functions:

 inputParameters::inputParameters
inputParameters::~inputParameters
inputParameters::init
inputParameters::configureFromFile
inputParameters::print
inputParameters::write
inputParameters::parameterValueKey

 inputParser.cpp

parses the input files and stores the information in the
inputParameters.
Functions:

 inputParser::inputParser()
 inputParser::~inputParser()

inputParser::parseFile
inputParser::parseString
inputParser::addIntParameter
inputParser::addUintParameter
inputParser::addFloatParameter
inputParser::addDoubleParameter
inputParser::addBoolParameter
inputParser::addStringParameter
inputParser::printParameterInfo
inputParser::validateParameters

 lorentzvector.cpp

holds Lorentz 4-vectors.
Functions:

lorentzVector::lorentzVector
lorentzVector::~lorentzVector
SetXYZT

 main.cpp
 the “main” file/function—where the program starts.

 narrowResonanceCrossSection.cpp

25

inherits from photonNucleusCrossSection. It calculates the
cross-section for narrow resonance vector mesons.
Functions:

narrowResonanceCrossSection::narrowResonanceCrossSection
narrowResonanceCrossSection::~narrowResonanceCrossSection
narrowResonanceCrossSection::crossSectionCalculation //
calculates the vector meson cross section assuming a
narrow resonance, per STAR Note 386.

 nBodyPhaseSpaceGen.cpp

is responsible for the kinematics used in the four-prong
decays.
Functions:

 nBodyPhaseSpaceGen::nBodyPhaseSpaceGen
 nBodyPhaseSpaceGen::~nBodyPhaseSpaceGen

nBodyPhaseSpaceGen::setDecay // sets decay constants and
prepares internal variables
nBodyPhaseSpaceGen::generateDecay// generates event with
certain n-body mass and momentum and returns event weight
general purpose function
nBodyPhaseSpaceGen::generateDecayAccepted// generates full
event with certain n-body mass and momentum only, when
event is accepted (return value = true) this function is
more efficient, if only weighted evens are needed
nBodyPhaseSpaceGen::pickMasses// randomly choses the (n -
2) effective masses of the respective (i + 1)-body systems
nBodyPhaseSpaceGen::calcWeight// computes event weight (=
integrand value) and breakup momenta uses vector of
intermediate two-body masses prepared by pickMasses()
nBodyPhaseSpaceGen::calcEventKinematics// calculates
complete event from the effective masses of the (i + 1)-
body systems, the Lorentz vector of the decaying system,
and the decay angles uses the break-up momenta calculated
by calcWeight()
nBodyPhaseSpaceGen::estimateMaxWeight// calculates maximum
weight for given n-body mass
nBodyPhaseSpaceGen::print

 nucleus.cpp

defines the basis properties of a nucleus such as radius,
form factor, and thickness.
Functions:

 nucleus::nucleus
 nucleus::~nucleus

nucleus::init
nucleus::nuclearRadius
nucleus::formFactor
nucleus::dipoleFormFactor
nucleus::thickness// calculates the nuclear thickness
function per Eq. 4 in Klein and Nystrand, PRC 60

 photonNucleusCrossSection.cpp

calculates the cross-section for coherent photon-Nucleus
interactions.
Functions:

photonNucleusCrossSection::photonNucleusCrossSection

26

photonNucleusCrossSection::~photonNucleusCrossSection
photonNucleusCrossSection::getcsgA // returns the cross-
section for photon-nucleus interaction producing vector
mesons
photonNucleusCrossSection::photonFlux // gives the
photon flux as a function of energy Egamma for arbitrary
nuclei and gamma. The first time it is called, it
calculates a lookup table which is used on subsequent
calls. It returns dN_gamma/dE (dimensions 1/E), not dI/dE
energies are in GeV, in the lab frame
photonNucleusCrossSection::nepoint// gives the spectrum of
virtual photons, dn/dEgamma, for a point charge q=Ze
sweeping past the origin with velocity gamma, integrated
over impact parameter from bmin to infinity, per Eq. 15.54
of Jacksons Classical Electrodynamics
photonNucleusCrossSection::sigmagp// gives the gamma-
proton --> VectorMeson cross section. Wgp is the gamma-
proton CM energy. Unit for cross section: fm**2
photonNucleusCrossSection::sigma_A// Nuclear Cross Section
sig_N,sigma_A in (fm**2)
photonNucleusCrossSection::sigma_N// Nucleon Cross Section
in (fm**2)
photonNucleusCrossSection::breitWigner// uses simple
fixed-width s-wave Breit-Wigner without coherent
backgorund for rho’ (PDG '08 eq. 38.56)

 pythiadecayer.cpp

links Pythia 8 and STARlight, and initalizes Pythia 8.
Functions:

 pythiaDecayer::pythiaDecayer
 pythiaDecayer::~pythiaDecayer

pythiaDecayer::init
pythiaDecayer::addParticle
pythiaDecayer::execute

 randomgenerator.cpp

STARlight’s random number generator, using the same algorithm
as ROOTs TRANDOM3 class. It is based on M. Matsumoto and T.
Nishimura, Mersenne Twistor: A 623-dimensionally
equidistributed uniform pseudorandom number generator. For
more information see
http://www.math.keio.ac.jp/~matumoto/emt.html
Functions:

 randomGenerator::SetSeed
 randomGenerator::Rndom

 readinluminosity.cpp

reads in the luminosity tables from slight.txt, which is
generated in the early stages of the program.
Functions:

 readLuminosity::readLuminosity
readLuminosity::~readLuminosity
readLuminosity::read

 spectrum.cpp

27

sets up functions needed to make cross-section calculations
for general photonuclear interactions modeled with DPMJET.
Functions:

 spectrum::spectrum
spectrum::generateKsingle
spectrum::generateKdouble
spectrum::drawKsingle
spectrum::drawKdouble
spectrum::generateBreakupProbabilities
spectrum::getFnSingle
spectrum::getFnDouble
spectrum::getTransformedNofe

 sprectrumprotonnucleus.cpp

sets up functions needed to make cross-section calculations
for general photonuclear interactions modeled with DPMJET.
Functions:

 spectrumProtonNucleus::spectrumProtonNucleus
spectrumProtonNucleus::generateBreakupProbabilities
spectrumProtonNucleus::getSigma

 starlight.cpp

initializes and then produces and decays events.
Functions:

 starlight::starlight
 starlight::~starlight

starlight::init
starlight::produceEvent
starlight::luminosityTableIsValid
starlight::createEventChannel

 starlightdpmjet.cpp

hosts the class starlightDpmJet which inherits from the
eventChannel class. It includes methods to generate
diffractive events with DPMJET.
Functions:

 starlightDpmJet::starlightDpmJet
starlightDpmJet::init
starlightDpmJet::produceEvent
starlightDpmJet::produceSingleEvent
starlightDpmJet::produceDoubleEvent

 starlightparticle.cpp

is a container to store particle information.
Functions:

 starlightParticle::starlightParticle
 starlightParticle::~starlightParticle

 starlightparticlecodes.cpp

converts jetset particle numbers to the corresponding GEANT
code.
Functions:

 starlightParticleCodes::jetsetToGeant

 starlightpythia.cpp

28

inherits from the eventChannel class. It includes methods to
calculate diffractive events with Pythia6. Pythia 6
functionality has been deprecated.
Functions:

 starlightPythia::starlightPythia
 starlightPythia::~starlightPythia

starlightPythia::init
starlightPythia::produceEvent

 starlightStandalone.cpp

is used by Main.cpp and in turn calls methods from the
starlight class.
Functions:

 starlightStandalone::starlightStandalone
 starlightStandalone::~starlightStandalone

starlightStandalone::init
starlightStandalone::run
starlightStandalone::boostEvent

 twophotonluminosity.cpp

inherits from beamBeamSystem, and is responsible for
calculating the two photon luminosity table based on W and Y.
Functions:

 twoPhotonLuminosity::twoPhotonLuminosity
 twoPhotonLuminosity::~twoPhotonLuminosity

twoPhotonDifferentialLuminosity
twoPhotonLuminosity::D2LDMDY
twoPhotonLuminosity::D2LDMDY_Threaded
twoPhotonLuminosity::integral
twoPhotonLuminosity::radmul
twoPhotonLuminosity::integrand
twoPhotonLuminosity::Nphoton

 upcevent.cpp

stores the final event information.
Functions:

 upcEvent::upcEvent
upcEvent::operator=
upcEvent::operator+
upcEvent::boost

 vector3.cpp

is a container for 3D-vectors.
Functions:

 vector3::vector3
 vector3::~vector3

vector3::SetVector

 wideResonanceCrossSection.cpp

inherits from photnNucleusCrossSection. It is responsible
for calculating the cross-section of vector mesons with a
wide resonance (eg. Rho).
Functions:

wideResonanceCrossSection::wideResonanceCrossSection
wideResonanceCrossSection::~wideResonanceCrossSection

29

wideResonanceCrossSection::crossSectionCalculation //
calculates the cross-section assuming a wide(Breit-Wigner)
resonance.

Include Files:

 beam.h //This class includes a single beam of nucleons
 Included in files
 beambeamsystem.h
 twophotonluminosity.h
 beam.cpp
 gammaaluminosity.cpp
 incoherentPhotonNucleusLuminosity.cpp
 spectrumprotonnucleus.cpp
 twophotonluminosity.cpp
 Functions
 beam
 ~beam
 rapidity
 photonFlux
 setBeamLorentzGamma

 beambeamsystem.h //This class covers a coliding beam system
 Included in files
 eventchannel.h
 gammaaluminosity.h
 gammaavm.h
 gammagammasingle.h
 incoherentPhotonNucleusLuminosity.h
 photonNucleusCrossSection.h
 starlightpythia.h
 twophotonluminosity.h
 beambeamsystem.cpp
 gammaaluminosity.cpp
 incoherentPhotonNucleusLuminosity.cpp
 spectrum.cpp
 spectrumprotonnucleus.cpp
 twophotonluminosity.cpp
 Functions
 beamBeamSystem
 ~beamBeamSystem
 cmsBoost
 beamLorentzGamma
 beam1
 beam2
 probabilityOfBreakup
 init
 generateBreakupProbabilities
 probabilityOfHadronBreakup
 probabilityOfPhotonBreakup

 bessel.h
 Included in files
 beam.cpp
 beambeamsystem.cpp

30

 bessel.cpp
 gammaaluminosity.cpp
 incoherentPhotonNucleusLuminosity.cpp
 photonNucleusCrossSection.cpp
 twophotonluminosity.cpp
 Functions
 besI0
 dbesk0
 dbesk1
 besI1

 eventchannel.h
 Included in files
 gammaavm.h
 gammagammaleptonpair.h
 gammagammasingle.h
 starlight.h
 starlightdpmjet.h
 starlightpythia.h
 eventchannel.cpp
 starlight.cpp
 Functions
 eventChannel
 ~eventChannel

nmbAttempts ///< returns number of attempted events
 nmbAccepted ///< returns number of accepted events
 produceEvent
 transform ///< Lorentz-transforms given 4-vector

pseudoRapidity ///< calculates pseudorapidity for
given 3-momentum

 eventfilewriter.h
 Included in files
 eventfilewriter.cpp
 main.cpp
 starlight.cpp
 starlightStandalone.cpp
 Functions
 eventFileWriter

writeEvent /** Write an UPC event to file */
writeFullPythiaInfo /** Set if we want to write full
pythia information */

 filewriter.h
 Included in files
 eventfilewriter.h
 eventfilewriter.cpp
 filewriter.cpp
 main.cpp
 starlight.cpp
 starlightStandalone.cpp
 Functions
 fileWriter
 ~fileWriter
 open //opens the file
 setFileName//set the filename we’re writing to

31

 gammaaluminosity.h
 Included in files

gammaaluminosity.cpp
 starlight.cpp
 Functions
 photonNucleusLuminosity
 ~photonNucleusLuminosity

photonNucleusDifferentialLuminosity
vmsigmapt
nofe
pttablegen

 gammaavm.h
 Included in files
 gammaavm.cpp
 starlight.cpp
 Functions
 Gammaavectormeson

~Gammaavectormeson
produceEvent
pickwy
momenta
pTgamma
vmpt
twoBodyDecay
fourBodyDecay
getMass
getWidth
getTheta
getSpin
getDaughterMass
pseudoRapidity
Gammaanarrowvm
~Gammaanarrowvm
Gammaawidevm
~Gammaawidevm
Gammaaincoherentvm
~Gammaaincoherentvm

 gammagammaleptonpair.h
 Included in files
 gammagammaleptonpair.cpp
 starlight.cpp
 Functions
 Gammagammaleptonpair
 ~Gammagammaleptonpair

twoLeptonCrossSection
calculateTable
produceEvent
twoMuonCrossSection
pickw
picky
pairMomentum
pp_1
pp_2

32

twoBodyDecay
thetalep
tauDecay
getMass
getWidth
getSpin

 gammagammasingle.h
 Included in files
 gammagammasingle.cpp
 starlight.cpp
 Functions
 Gammagammasingle
 ~Gammagammasingle

singleCrossSection
produceEvent
pickw
picky
parentMomentum
pp
twoBodyDecay
thephi
getMass
getWidth
getSpin

 incoherentPhotonNucleusLuminosity.h
 Included in files
 incoherentPhotonNucleusLuminosity.cpp
 starlight.cpp
 Functions
 incoherentPhotonNucleusLuminosity
 ~incoherentPhotonNucleusLuminosity

incoherentPhotonNucleusDifferentialLuminosity
nofe

 incoherentVMCrossSection.h
 Included in files
 gammaavm.cpp
 incoherentVMCrossSection.cpp
 Functions
 incoherentVMCrossSection
 ~incoherentVMCrossSection

crossSectionCalculation

 inputParameters.h
 Included in files
 beam.h
 gammaaluminosity.h
 incoherentPhotonNucleusLuminosity.h
 readinluminosity.h
 starlightpythia.h
 beam.cpp
 beambeamsystem.cpp
 gammaaluminosity.cpp
 incoherentPhotonNucleusLuminosity.cpp

33

 inputParameters.cpp
 nucleus.cpp
 readinluminosity.cpp
 starlight.cpp
 starlightStandalone.cpp
 twophotonluminosity.cpp
 Functions
 parameterlist

add
validationKey

 parameterbase
toString

 operator<<
 parameter

operator=
ptr

 value
 name
 required
 setValue
 setName
 setRequired
 inputParameters
 ~inputParameters
 init

configureFromFile
baseFileName
beam1Z

 beam1A
 beam2Z
 beam2A
 beamLorentzGamma
 beam1LorentzGamma
 beam2LorentzGamma
 maxW
 minW
 nmbWBins
 maxRapidity
 nmbRapidityBins
 ptCutEnabled
 ptCutMin
 ptCutMax
 etaCutEnabled
 etaCutMin
 etaCutMax
 productionMode
 nmbEvents
 prodParticleId
 randomSeed
 beamBreakupMode
 interferenceEnabled
 interferenceStrength
 maxPtInterference
 nmbPtBinsInterference
 ptBinWidthInterference
 coherentProduction
 incoherentFactor

34

 minGammaEnergy
 maxGammaEnergy
 pythiaParams
 pythiaFullEventRecord
 xsecCalcMethod
 prodParticleType
 prodParticleDecayType
 interactionType
 protonEnergy

setBaseFileName
 setBeam1Z
 setBeam1A
 setBeam2Z
 setBeam2A
 setBeamLorentzGamma
 setBeam1LorentzGamma
 setBeam2LorentzGamma
 setMaxW
 setMinW
 setNmbWBins
 setMaxRapidity
 setNmbRapidityBins
 setPtCutEnabled
 setPtCutMin
 setPtCutMax
 setEtaCutEnabled
 setEtaCutMin
 setEtaCutMax
 setProductionMode
 setNmbEvents
 setProdParticleId
 setRandomSeed
 setBeamBreakupMode
 setInterferenceEnabled
 setInterferenceStrength
 setMaxPtInterference
 setNmbPtBinsInterference
 setPtBinWidthInterference
 setCoherentProduction
 setIncoherentFactor
 setMinGammaEnergy
 setMaxGammaEnergy
 setPythiaParams
 setPythiaFullEventRecord
 setXsecCalcMethod
 setProdParticleType
 setProdParticleDecayType
 setInteractionType
 setProtonEnergy
 setParameter
 print
 write
 parameterValueKey
 instance

 inputParser.h
 Included in files

35

 inputParameters.h
 inputParameters.cpp
 inputParser.cpp
 Functions
 inputParser
 inputParser

parseFile/** Parse a file */
parseString
addIntParameter
addUintParameter
addFloatParameter
addDoubleParameter
addBoolParameter
addStringParameter
printParameterInfo
validateParameters
_parameter
operator==

 operator<
 printParameterInfo
 addParameter

 lorentzvector.h
 Included in files
 nBodyPhaseSpaceGen.h
 starlightparticle.h
 lorentzvector.cpp
 Functions
 lorentzVector
 ~lorentzVector
 SetXYZT

SetPxPyPzE
 GetPx
 GetPy
 GetPz
 GetE
 operator +=
 operator -=
 M2
 M
 BoostVector
 Boost
 operator <<

 narrowResonanceCrossSection.h
 Included in files
 narrowResonanceCrossSection.cpp
 gammaavm.cpp
 Functions
 narrowResonanceCrossSection

~narrowResonanceCrossSection
crossSectionCalculation

 nBodyPhaseSpaceGen.h
 Included in files
 gammaavm.h

36

 nBodyPhaseSpaceGen.cpp
 Functions
 Factorial
 breakupMomentum
 nBodyPhaseSpaceGen
 ~nBodyPhaseSpaceGen
 setDecay

random
 generateDecay

generateDecayAccepted
setMaxWeight

 maxWeight
 normalization
 eventWeight
 maxWeightObserved
 resetMaxWeightObserved
 estimateMaxWeight

eventAccepted
daughter

 daughters
 nmbOfDaughters
 daughterMass
 intermediateMass
 breakupMom
 cosTheta
 phi
 print
 operator <<
 pickMasses

calcWeight
pickAngles

 calcEventKinematics
eventAccepted

 nucleus.h
 Included in files
 beam.h
 beambeamsystem.h
 twophotonluminosity.h
 gammaaluminosity.h
 incoherentPhotonNucleusLuminosity.cpp
 nucleus.cpp
 spectrumprotonnucleus.cpp
 starlightdpmjet.cpp
 starlightpythia.cpp
 twophotonluminosity.cpp
 Functions
 nucleus
 ~nucleus
 init

Z
 A
 nuclearRadius
 formFactor
 dipoleFormFactor
 thickness

37

 Q0
 rho0
 woodSaxonSkinDepth
 fritiofR0
 rws

 photonNucleusCrossSection.h
 Included in files
 gammaaluminosity.h
 incoherentPhotonNucleusLuminosity.h
 incoherentVMCrossSection.h
 narrowResonanceCrossSection.h
 wideResonanceCrossSection.h
 gammaavm.cpp
 photonNucleusCrossSection.cpp
 Functions
 photonNucleusCrossSection
 ~photonNucleusCrossSection

slopeParameter///< returns slope of t-distribution
[(GeV/c)^{-2}]

 getChannelMass ///< returns mass of the produced
system [GeV/c^2]

 getBNORM
luminosity//< returns luminosity [10^{26} cm^{-2}
sec^{-1}]

 getbbs///< returns beamBeamSystem
 vmPhotonCoupling ///< vectormeson-photon coupling

constant f_v / 4 pi (cf. Eq. 10 in KN PRC 60 (1999)
014903)

 getDefaultC
maxPhotonEnergy///< returns max photon energy in lab
frame [GeV] (for vectormesons only)
crossSectionCalculation

 getcsgA
photonFlux
sigmagp
sigma_A
sigma_N
breitWigner
nepoint

 pythiadecayer.h
 Included in files
 gammagammasingle.h
 pythiadecayer.cpp
 Functions
 pythiaDecayer
 ~pythiaDecayer

init// Initialize
addParticle// Add particle to current event
execute// Execute event and return starlight type
event
pythiaDecayer
operator==

 PythiaStarlight.h

38

 Included in files
 starlight.cpp
 Functions
 pythiaStarlight

init
getPythia

 randomgenerator.h
 Included in files
 eventchannel.h
 gammaavm.h
 gammagammasingle.h
 nBodyPhaseSpaceGen.h
 inputParameters.cpp
 randomgenerator.cpp
 spectrum.cpp
 Functions
 SetSeed

Rndom
randomGenerator
instance

 readinluminosity.h
 Included in files
 eventchannel.h
 gammaavm.h
 gammagammaleptonpair.h
 gammagammasingle.h
 readinluminosity.cpp
 Functions
 readLuminosity
 ~readLuminosity

read

 reportingUtils.h
 Included in files
 inputParser.h
 nBodyPhaseSpaceGen.h
 beam.cpp
 beambeamsystem.cpp
 inputParameters.cpp
 main.cpp
 nucleus.cpp
 photonNucleusCrossSection.cpp
 pythiadecayer.cpp
 starlight.cpp
 starlightStandalone.cpp
 Functions
 getClassMethod__

printErr
 printWarn
 printInfo
 svnVersion
 printSvnVersion

compileDir
 printCompilerInfo

39

 operator <<
 progressIndicator
 trueFalse
 yesNo
 onOff
 enDisabled

 spectrum.h
 Included in files
 spectrumprotonnucleus.h
 starlightdpmjet.h
 spectrum.cpp
 starlightdpmjet.cpp
 Functions
 spectrum // Spectrum must be constructed with beam-

beam system, default constructor disallowed
 generateKsingle // Generate a table of photon energy

probabilities. Use NK+1 logarithmic steps between
Et_min and Eg_max
generateKdouble // Generate a 2-D table of photon
energy probabilities. Use NK+1 x NK+1 logarithmic
steps between Et_min and Eg_max
drawKsingle // Get the energy of a single gamma
@return energy of the gamma
drawKdouble // Get the energy of a single gamma
@param egamma1 variable passed by reference to get
the energy of the frst gamma @param egamma2 variable
passed by reference to get the energy of the second
gamma @return energy of the gamma
setBeamBeamSystem // Set the beam beam system
setMinGammaEnergy //Set the minimum gamma energy
setMaxGammaEnergy / Set the maximum gamma energy
setBmin //Set minimum impact parameter
setBMax //Set maximum impact parameter
generateBreakupProbabilities //Generate the hadron
breakup probability table

 getSigma ---1.05?
 getTransformedNofe
 getFnSingle
 getFnDouble

 sprectrumprotonnucleus.h
 Included in files
 spectrumprotonnucleus.cpp
 starlightdpmjet.cpp
 starlightpythia.cpp
 Functions
 spectrumProtonNucleus
 getNucleonNucleonSigma --- 7.35?
 generateBreakupProbabilities
 getSigma

 starlight.h
 Included in files
 main.cpp
 starlight.cpp

40

 starlightStandalone.cpp
 Functions
 starlight
 ~starlight
 init

produceEvent
configFileName

 nmbAttempts
 nmbAccepted
 luminosityTableIsValid
 createEventChannel

 starlightconstants.h
 Included in files
 eventchannel.h
 gammaavm.h
 gammagammasingle.h
 gammagammaleptonpair.h
 inputParameters.h
 nBodyPhaseSpaceGen.h
 photonNucleusCrossSection.h
 upcevent.h
 beam.cpp
 beambeamsystem.cpp
 gammaaluminosity.cpp
 gammagammaleptonpair.cpp
 gammagammasingle.cpp
 incoherentPhotonNucleusLuminosity.cpp
 incoherentVMCrossSection.cpp
 inputParameters.cpp
 narrowResonanceCrossSection.cpp
 nucleus.cpp
 photonNucleusCrossSection.cpp
 readinluminosity.cpp
 twophotonluminosity.cpp
 wideResonanceCrossSection.cpp
 Functions
 N/A

 starlightdpmjet.h
 Included in files
 starlight.cpp
 starlightdpmjet.cpp
 Functions
 starlightDpmJet

init
produceEvent

 produceSingleEvent
produceDoubleEvent
setSingleMode

 setDoubleMode
 setMinGammaEnergy
 setMaxGammaEnergy
 setProtonMode

 starlightlimits.h

41

 Included in files
 gammagammaleptonpair.h
 readinluminosity.h
 twophotonluminosity.h
 Functions
 N/A

 starlightparticle.h
 Included in files
 pyhthiadecayer.h
 upcevent.h
 starlightparticle.cpp
 Functions
 starlightParticle
 ~starlightParticle

setPdgCode
 getPdgCode
 setCharge
 getCharge
 setFirstParent
 getFirstParent
 setLastParent
 getLastParent
 setFirstDaughter
 getFirstDaughter
 setLastDaughter
 getLastDaughter
 getStatus
 setStatus
 setVertex
 getVertex

 starlightparticlecodes.h
 Included in files
 eventfilewriter.cpp
 starlightparticlescodes.cpp
 Functions
 jetsetToGeant//Converts a jetset code into a GEANT

codes

 starlightpythia.h
 Included in files
 starlight.cpp
 starlightpythia.cpp
 Functions
 starlightPythia
 ~starlightPythia

init
produceSingleEvent
produceDoubleEvent

 produceEvent
 setSingleMode
 setDoubleMode
 setMinGammaEnergy
 setMaxGammaEnergy
 setFullEventRecord

42

 starlightStandalone.h
 Included in files
 main.cpp
 starlightStandalone.cpp
 Functions
 starlightStandalone
 ~starlightStandalone

init
run
configFileName

 eventDataFileName
 setConfigFileName
 setEventDataFileName

boostEvent

 twophotonluminosity.h
 Included in files
 starlight.cpp
 twophotonluminosity.cpp
 Functions
 twoPhotonLuminosity
 ~twoPhotonLuminosity

twoPhotonDifferentialLuminosity
D2LDMDY
D2LDMDY_Threaded
integral
radmul
integrand
Nphoton

 upcevent.h
 Included in files
 eventchannel.h
 filewriter.h
 gammaavm.h
 pythiadecayer.h
 starlight.h
 starlightpythia.h
 starlight.cpp
 upcevent.cpp
 Functions
 upcEvent
 ~upcEvent
 addParticle
 addVertex
 addGamma
 getParticles
 getVertices
 getGammaEnergies
 operator=
 operator+
 boost

 vector3.h
 Included in files

43

 lorentzvector.h
 vector3.cpp
 Functions
 vector3
 ~vector3

GetVector
 SetVector

operator +=
 operator =
 operator -=
 X
 Y
 Z
 Mag2
 Mag
 operator <<

 wideResonanceCrossSection.h
 Included in files
 gammaavm.cpp
 wideResonanceCrossSection.cpp
 Functions
 wideResonanceCrossSection
 ~wideResonanceCrossSection

crossSectionCalculation

